Comparing Helmboldt selected PAPER sources with existing catalogs.

Danny Jacobs

December 2, 2009

Consider 65 sources measured in 4 10MHz channels in 16 antenna Green Bank data. The visibiliites are flux calibrated to 3c405 (cyg), phased to the source location and averaged in time to form a "beam" on the source that results in a flux measurement less contaminated by non-gaussianity than a model fit. With this large catalog one can start to ask questions like: How does the pgb catalog compare to other catalogs? or more exactly How does the difference between paper and other catalogs compare to the difference between existing catalogs. Existing catalogs at these frequencies are dominated by measurements at 151 (7c and 6c) and 178 (3c) so we will focus on the 150 and 170 MHz channels. PGB sources are selected from the Helmboldt catalog which is based on the VLSS catalog at 74 MHz. Helmboldt aggregates all available spectrum points between 10MHz and 33GHz, provides a fitted spectrum as well as a bestfit spectrum, the fit rms and number of components. Comparing hundreds of catalogs is difficult to do without error and indeed several irregularities in the Helmboldt spectrum data appear in the "anchor" nvss points included in the spectrum. By flagging and removing sources with high rms (rms > log(1.25))and multiple components we can eliminate this variance and at the same time generate a source flag list to use on misbehaving sources from all other catalogs (Fig 1). In this comparison we do our comparisons with both the full catalogs and those sources that also have entries in the "well behaved" helmboldt set.

Each catalog has its own flux scale which will likely differ from the others. Thus the comparison methodology is to first solve for a linear transformation that scales the catalog in question to minimize the difference between the two (Fig 2). $F_{corr} = F_{meas}m + b$

The rms and distribution of the fractional error between the two catalogs tells us how we did (Fig 3).

The statistical standard of comparison between independent catalogs is set by the comparison between the 6th and 7th cambridge surveys at bottom of Fig 3. The effect of the Helmboldt flagging is most striking when applied to this comparison. While the error between the catalogs is over 80% even when the flux of 7c is corrected the Helmboldt flagged list of sources has a remarkably low average fractional error of 5% and requires less correction to get to the same flux scale. Against this error landscape we see that this initial paper catalog

Figure 1: NVSS in Helmboldt vs NVSS from Vizier in blue. Several of these errors are related to "corrections" for the number of components listed in the NVSS data set but most are not of obvious origin. All sources with rms < log(1.25) and ncomp=1 in green agree exactly.

Figure 2: left: pgb16 170MHz helmboldt selected catalog compared against 3cr. Flux correction of pgb*0.89+0.55Jy has been applied to pgb to force agreement. rms fractional error: 0.57 right: pgb downselected for good fit in helmboldt. Flux correction of pgb*0.73+1.99Jy has been applied. rms fractional error: 0.37. Note that removing the high Helmboldt rms sources removes most sources above 50 Jys, significantly reducing the significance of the flux correlation.

Figure 3: Comparison between various reference surveys for all common sources (blue) as well as for sources having low rms and ncomp=1 as defined by helmboldt (green) starred catalog has been corrected, parameters listed in table. Left: distribution of catalog difference. right: best fit flux correction required to correct pgb (top 3) or 7c (bottom) to minimize difference with reference catalog, the average fractional error and the number of sources in the overalap. Note the significant positive effect of the helmboldt based downselection on the agreement between 6c and 7c.

fairs middlingly well, having an average fractional error somewhere between 40 and 60% before removal of helmboldt flagged sources and 20 to 35% after. Use of the Helmboldt flags is hampered here by the relatively low number of sources which are both well behaved according to Helmboldt, included in the PAPER set, and also surveyed by 6c or 7c.

Without application of the spectral fit information in Helmboldt we can only say that the pgb16 catalog has, on average half as much fractional error $\sim 40\%$ compared to the cambridge surveys then the cambridge surveys do between themselves. However when we exclude those sources known to have complicated spectral or morphological properties the cambridge surveys are found to agree with each other to within 5% while comparisons with the PAPER measurements enjoy only a small improvement.

Conclusion

Using the Helmboldt et. al. spectral compilation meta-data we can select a "Class A" subset of sources which have a much better than average agreement between known catalogs. While this does not necessarily improve agreement between the current PAPER catalog and known catalogs, this is only partly because just 9 of the 35 Class A sources were measured for this catalog. Despite the low numbers the error in these 9 sources is larger than it should be by about a factor of 4.

14:47:08.5_+76:56:21 J1447+766 10:11:45.7_+46:28:24 J1012+463 15:41:45.8_+60:15:35 J1542+602 13:42:13.5_+60:21:45 J1342+602 18:07:48.3_+48:29:26 J1808+483 15:35:01.6_+55:36:49 J1535+554 14:21:05.6_+41:44:49 J1421+414 15:24:05.7_+54:28:15 J1524+543 09:39:24_+83:15.4 J0939+832 16:04:12.8_+44:23:23 J1604+442 11:45:43.4_+49:46:11 J1146+495 07:09:18.1_+74:49:30 J0709+745 08:57:39.9_+34:04:03 J0858+340 02:38:02.2_+59:11:47 J0238+591 16:28:53.4_+44:19:06 J1629+442 12:20:33.3_+33:43:09 J1221+334 15:20:47.4_+72:25:05 J1521+723 J1014+744 10:14:15.1_+74:37:38 14:06:43.5_+34:11:19 J1407+341 15:49:58.5_+62:41:23 J1550+624 11:11:31.8_+35:40:42 J1112+354 11:14:38.4_+40:37:18 J1115+404 18:19:04.2_+50:31:04 J1819+503 17:10:44.9_+46:01:30 J1711+460 11:45:29.2_+31:33:41 J1145+313 10:58:58.6_+43:01:20 J1059+430 12:09:13.8_+43:39:22 J1209+434 17:04:42.2_+60:44:43 J1705+604 08:01:35.4_+50:09:46 J0802+501 14:49:21.6_+63:16:14 J1449+632 09:22:50.2_+53:02:21 J0923+530 13:45:26.7_+49:46:35 J1345+495 12:15:29.7_+53:35:52 J1216+534 09:12:01.9_+37:51:32 J0912+375

Table 1: Class A sources in truncated position name and J2000 VLSS type name. These sources are available in Helmboldt (VLSS with decent spectra), 7c and 6c.

J1027+063	J0051+511	J0713+115	J0353-071
J0728+144	J1645+131	J1630+232	J2119+182
J1542+602	J0334+741	J2014+233	J2231+541
J2147+152	J0835+141	J0714+144	J0853-205
J0327+552	J2144+281	J0036+184	J0025-293
J1347-080	J1209+434	J2341+043	J0937+042
J1146+495	J0003-173	J1115+404	J2151+143
J1604+442	J0155+435	J1216+534	J1123+053
J1106-211	J1449+632	J2321-162	J0748-192
J1808+483	J1221+334	J0805+102	J0118+026
J2033+535	J0351-143	J0645+212	J0234+313
J1342+602	J1002+285	J0455-203	J0403+746
J1357+010	J0412-006	J0334-011	J1629+442
J0614+260	J1625+235	J0216-126	J2108+494
J0413+745	J1705+604	J1145+313	J2129+073
J0853+135	J0355+725	J0400-161	J0020+154
J0952-000	J1834+473	J2118-302	J0034+392
J0434+723	J0136+206	J0815-031	J0725-094
J2203+624	J1423+194	J0912+375	J2346+656
J0809-103	J1306+086	J1012+463	J1711+460
J1846+095	J2312+092	J0520+505	J0858+275
J0907+165	J0827-203	J1517+070	J0455-301
J1550+624	J2354+326	J1014+744	J2048+070
J0447+504	J0035-200	J1407+341	J2020+294
J2118+605	J1206+041	J1524+543	J2123+170
J2131-204	J0059-170	J0622+143	J0744+375
J0310+171	J2022+100	J1121+233	J1143+221
J2359+440	J0108-160	J0643+232	J0950+142
J0709+745	J1447+766	J1112+354	J0939+832
J0944+095	J0858+340	J1254+154	J1644+172
J1150+125	J0827+292	J2104+763	J0923+530
J1338-063	J0802+501	J1134-195	J1620+174
J1315-186	J1521+723	J0446+395	J1425-296
J1730+795	J1535+554	J0453+313	J1429-012
J0338+505	J0128-140	J1059+430	J1102-012
J1819+503	J1134-173	J0542+473	J0531+063
J0503+252	J1345+495	J1355+161	J0627-055
J0527+325	J0038+132	J0112+144	J0511-184
J0238+591	J2325-121	J1605-173	J1759+133
J2206+293	J0110+315	J0802+141	J1421+414
J1646+021	J0821+181	J0041+331	J0522-205

Table 2: The high quality Helmboldt sources. Those having rms $<\!\log(1.25)$ and ncomp=1. 164 out of 388 have passed this cut